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Abstract In this paper the recently developed semi-analytic method to solve the free-surface wave inter-
action with a thin elastic plate is extended to the case of a plate of finite thickness. The method used is
based on the reformulation of the differential–integral equation for this problem. The thickness of the
plate is chosen such that the elastic behavior of the plate can be described by means of thin-plate theory,
while the water pressure at the plate is applied at finite depth. The water depth is finite.

Keywords Boundary-integral equations · Flexible platform · Free-surface flows · Hydroelasticity · Wave
diffraction

1 Introduction

We consider the two-dimensional interaction of an incident wave with a flexible floating dock or very
large floating platform (VLFP) with finite draft. The water depth is finite. The case of a rigid dock is a
classical problem. For instance Mei and Black [1] have solved the rigid problem, by means of a variational
approach. They considered a fixed bottom and fixed free-surface obstacle, so they also covered the case
of small draft. After splitting the problem in a symmetric and an antisymmetric one, the method consists of
matching eigenfunction expansions of the velocity potential and its normal derivative at the boundaries of
two regions. In principle, their method can be extended to the flexible-platform case. Recently we derived
a simpler method for both the moving rigid and the flexible dock [2]. However, we considered objects with
zero draft only. In this paper we extend our approach to the case of finite, but small, draft. The draft is
small compared to the length of the platform to be sure that we may use as a model, for the elastic plate,
the thin-plate theory, while the water pressure at the plate is applied at finite depth. The method is based
on a direct application of Green’s theorem, combined with an appropriate choice of expansion functions
for the potential in the fluid region outside the platform and the deflection of the plate. The integral
equation obtained by Green’s theorem is transformed into an integral-differential equation by making use
of the equation for the elastic plate deflection. One must be careful in choosing the appropriate Green’s
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function. It is crucial to use a formulation of the Green’s function consisting of an integral expression
only. In Appendix A we derive such a Green’s function for the two-dimensional case. One may derive
an expression as can be found in the article of Wehausen and Laitone [3] after application of Cauchy’s
residue lemma. In the three-dimensional case one also may derive such an expression. The advantage
of this version of the source function is that one may work out the integration with respect to the space
coordinate first and apply the residue lemma afterwards. In the case of a zero-draft platform this approach
resulted in the dispersion relation in the plate region and an algebraic set of equations for the coefficients
of the deflection only. Here we derive a coupled algebraic set of equations for the expansion coefficients
of the potential in the fluid region and the deflection.

2 Mathematical formulation for the finite-draft problem

In this section, we derive the general formulation for the diffraction of waves by a flexible platform of
general geometric form. The fluid is ideal, so we introduce a velocity potential using V(x, t) = ∇�(x, t),
where V(x, t) is the fluid velocity vector. Hence �(x, t)is a solution of the Laplace equation:

�� = 0 in the fluid, (1)

together with the linearized kinematic condition, �z = w̃t, and dynamic condition, p/ρ = −�t − gw̃, at the
mean water surface z = 0, where w̃(x, y, t) denotes the free-surface elevation, and ρ is the density of the
water. The linearized free-surface condition outside the platform, z = 0 and (x, y) ∈ F , becomes:

∂2�

∂t2
+ g

∂�

∂z
= 0. (2)

The platform is situated at the mean free surface z = 0, its thickness being d. The platform is modelled
as an elastic plate with zero thickness. The neutral axis of the plate is at z = 0, while the water-pressure
distribution is applied at z = −d. Meylan et al. [4] have considered finite thickness as well. They consider
the elastic equation for the deflection of a plate of finite thickness; however, they apply the equation of
motion at z = 0. They show for large platforms a minor influence due to the change of the elastic model.
Our elastic model can easily be modified by changing the fourth-order differential operator, but due to
lack of knowledge of suitable parameters we decided not to do so. So we neglect horizontal and torsional
motion. To describe the vertical deflection w̃(x, y, t), we apply the isotropic thin-plate theory, which leads
to an equation for w̃ of the form:

m(x, y)
∂2w̃
∂t2

= −
(

∂2

∂x2 + ∂2

∂y2

) (
D(x, y)

(
∂2w̃
∂x2 + ∂2w̃

∂y2

))
+ p|z=−d (3)

where m(x, y) is the piece-wise constant mass of unit area of the platform while the piece-wise constant
D(x, y) is its equivalent flexural rigidity. We differentiate (3) with respect to t and use the kinematic and
dynamic condition to arrive at the following equation for � at z = −d in the platform area (x, y) ∈ P :

{(
∂2

∂x2 + ∂2

∂y2

) (
D(x, y)

ρg

(
∂2

∂x2 + ∂2

∂y2

))
+ m(x, y)

ρg
∂2

∂t2
+ 1

}
∂�

∂z
+ 1

g
∂2�

∂t2
= 0. (4)

Due to the fact that the plate is freely floating, we do not consider the hydrostatic pressure.
The edges of the platform are free of shear forces and moment. We assume that the flexural rigidity is

constant along the edge and its derivative normal to the edge equals zero. Also, we assume that the radius
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of curvature, in the horizontal plane, of the edge is large. Hence, the edge may be considered to be straight
locally. We then have the following boundary conditions at the edge:

∂2w̃
∂n2 + ν

∂2w̃
∂s2 = 0 and

∂3w̃
∂n3 + (2 − ν)

∂3w̃
∂n∂s2 = 0 (5)

where ν is Poisson’s ratio, n is in the normal direction, in the horizontal plane, along the edge and s denotes
the arc-length along the edge. At the bottom of the fluid region z = −h we have:

∂�

∂z
= 0. (6)

We assume that the velocity potential is a time-harmonic wave function, �(x, t) = φ(x)e−iωt. We introduce
the following parameters:

K = ω2

g
, µ = mω2

ρg
, D = D

ρg
.

In a practical situation the total length L of the platform is a few thousand meters. We obtain at the free
surface, z = 0:

∂φ

∂z
− Kφ = 0 (7)

and at the plate, z = −d, for a single strip,

{
D

(
∂2

∂x2 + ∂2

∂y2

)2

− µ + 1

}
∂φ

∂z
− Kφ = 0. (8)

The potential of the undisturbed incident wave is given by

φinc(x) = gζ∞
iω

cosh(k0(z + h))

cosh(k0h)
exp{ik0(x cos β + y sin β)}, (9)

where ζ∞ is the wave amplitude in the original coordinate system, ω the frequency, while the wave number
k0 is the positive real solution of the dispersion relation:

k0 tanh(k0h) = K, (10)

for finite water depth. We restrict ourselves to the case of normal incidence, β = 0. In [5] it is shown that
the extension to oblique waves can be done easily.

To obtain an integral equation for the deflection w̃(x, y, t) = Re
[
w(x, y)e−iωt

]
of the platform, see [6]

and [5], it is very convenient to apply Green’s theorem, making use of the Green’s function, G(x;ξξξ), that
fulfills boundary conditions at the seabed (6) and at the free surface (7). Application of Green’s theorem
in the fluid domain leads to the following expression for the potential function:

4πφ(x) = 4πφinc(x) +
∫
C

φ(ξξξ)
∂G(x,ξξξ)

∂n
dS +

∫
P

(
φ(ξξξ)

∂G(x,ξξξ)

∂ζ
− ∂φ(ξξξ)

∂ζ
G(x;ξξξ)

)
dS. (11)
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The first integral is along the vertical sides of the platform, where the normal velocity of the fluid equals
zero. The second integral is along the flat bottom. In the two-dimensional case, (x, z)-plane, the expression
for the total potential becomes:

2πφ(x, z) = 2πφinc(x, z) +
∫ 0

−d

(
φ(0, ζ )

∂G(x, z; 0, ζ )

∂ξ
− φ(l, ζ )

∂G(x, z; l, ζ )

∂ξ

)
dζ

+
∫ l

0

(
φ(ξ , −d)

∂G(x, z; ξ , −d)

∂ζ
− ∂φ(ξ , −d)

∂ζ
G(x, z; ξ , −d)

)
dξ . (12)

We continue with the two-dimensional case.
The Green’s function G(x, z; ξ , ζ ) for the two-dimensional case can be derived by means of a Fourier

transform with respect to the x-coordinate. As is shown in Appendix A it has the form:

G(x, z; ξ , ζ ) =
∫ ∞

−∞
1
γ

K sinh γ z + γ cosh γ z
K cosh γ h − γ sinh γ h

cosh γ (ζ + h)eiγ (x−ξ) dγ for z > ζ (13)

and

G(x, z; ξ , ζ ) =
∫ ∞

−∞
1
γ

K sinh γ ζ + γ cosh γ ζ

K cosh γ h − γ sinh γ h
cosh γ (z + h)eiγ (x−ξ) dγ for z < ζ . (14)

If we close the contour of integration in the complex γ -plane we obtain the complex version of formula
(13.34), as can be found in [3]:

G(x, z; ξ , ζ ) = −2π i
∞∑

i=0

1
ki

k2
i − K2

hk2
i − hK2 + K

cosh ki(z + h) cosh ki(ζ + h)eiki|x−ξ |, (15)

where k0 and ki, i = 1, . . . , ∞ are the positive real and positive imaginary zeros of the dispersion relation
(10).

The advantage of this formulation for Green’s function is that, by means of Green’s theorem, we can
derive the algebraic set of equations for the expansion coefficients by carrying out the integration with
respect to the spatial variable analytically first.

It is well known that for the rigid case, [1], the potential can be expanded in eigenfunctions in the regions
outside and underneath the platform. In the traditional approach continuity of mass and velocity leads to
sets of equations at x = 0 and x = l, respectively. The use of orthogonality relations then gives a set of
equations for the unknown coefficients. In the case of zero thickness it is shown by Hermans [2] that a set
of algebraic equations can be obtained for the expansion coefficients of the deflection alone. Here we also
use this approach to obtain a coupled set of algebraic equations for the finite-thickness case as well. It is
also possible to make a non-orthogonal expansion, see for instance [7], of the potential underneath the
flexible platform. In that case one can express, a posteriori, the deflection as an expansion in exponential
functions. The dispersion relations derived by both approaches are the same, as expected.

3 Semi-analytic solution

Equation 12 or the three-dimensional version (11), together with the condition at the bottom of the plate
(8), can be solved by means of a numerical diffraction code based on WAMIT. However, it is interesting
to see how one can solve the equations semi-analytically for simple geometries. Here we work out the case
of a strip.
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We eliminate in relation 12 the function φ(ξ , −d) by using Eq. 8 and the kinematic condition:

φζ (ξ , −d) = −iωw(ξ). (16)

Thus we obtain,

2πφ(x, z) = 2πφinc(x, z) +
∫ 0

−d

(
φ(0, ζ )

∂G(x, z; 0, ζ )

∂ξ
− φ(l, ζ )

∂G(x, z; l, ζ )

∂ξ

)
dζ

−iω
∫ l

0

(
1
K

(
D ∂4

∂ξ4 − µ + 1
)

w(ξ)
∂G(x, z; ξ , −d)

∂ζ
− w(ξ)G(x, z; ξ , −d)

)
dξ . (17)

We assume that the deflection w(x) can be written as an expansion in exponential functions, truncated at
N + 2 terms of the form:

w(x) = ζ∞
N+1∑
n=0

(
aneiκnx + bne−iκn(x−l)

)
. (18)

The values for κn follow from a ‘dispersion’ relation, yet to be determined. If we consider κn’s with either
real positive values or, if they are complex, with positive imaginary part, then the first part of expres-
sion (18) expresses modes travelling and evanescent to the right. The second part then describes modes
travelling and evanescent to the left.

Furthermore, we expand the potential function for x ≤ 0 and x ≥ l in series of orthogonal eigenfunctions,
truncated at N terms:

φ(x, z) = gζ∞
iω

⎛
⎝cosh k0(z + h)

cosh k0h
eik0x +

N−1∑
n=0

αn
cosh kn(z + h)

cosh knh
e−iknx

⎞
⎠ for x ≤ 0 (19)

and

φ(x, z) = gζ∞
iω

N−1∑
n=0

βn
cosh kn(z + h)

cosh knh
eikn(x−l) for x ≥ l, (20)

The difference in the number of expansion functions in (18) is due to the fact that we have four boundary
conditions at the edge of the plate (5). The coefficients α0 and β0 are the reflection and transmission
coefficients, respectively. It should be noticed that the potential under the platform is not expanded in a
set of orthogonal eigenfunctions. By the way, such a set does not exist. Extension of the solution along the
bottom of the platform in the flow region is simply done by application of (17). We have introduced 4N + 4
unknown coefficients. Next we derive an algebraic set of equations for these coefficients.

First we take (x, z) at the bottom of the plate, which leads to the following equation:

2π

(
D ∂4

∂x4 −µ+1
)

w(x) = −2π
K
iω

φinc(x,−d)

− K
iω

∫ 0

−d

(
φ(0,ζ )

∂G(x,−d;0,ζ )

∂ξ
−φ(l,ζ )

∂G(x,−d;l,ζ )

∂ξ

)
dζ

+ lim
z↑−d

∫ l

0

((
D ∂4

∂ξ4 −µ+1
)

w(ξ)
∂G(x,z;ξ ,−d)

∂ζ
−Kw(ξ)G(x,z;ξ ,−d)

)
dξ . (21)

We take the limit in the last integral after having carried out the spatial integrations analytically. This
means that we keep the factor 2π in the left-hand side of the equation. The commonly used factor π and
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principle-value integral may be obtained by taking the limit first. However, it is more convenient to avoid
the principle-value integral in our approach. In the first integral on the right-hand side we insert for the
Green function the series expansion (15) and for the potential function the expansions (19) and (20), while
in the second integral we use (14) for the Green function and (18) for the deflection. In the first integral
integration with respect to ζ and in the last integral the integration with respect to ξ can be carried out.
Next we close the remaining contour of integration in the complex γ -plane.

If we now equalize the coefficients of eiκnx and of e−iκn(x−l), we obtain the following ‘dispersion’ relation
for κn, the κn’s are the zero’s of

(Dκ4 − µ)K cosh κd +
(

K2 − κ2(Dκ4 − µ + 1)
) sinh κd

κ
= (Dκ4 − µ + 1)

(K cosh κh − κ sinh κh)

cosh κ(−d + h)
.

After some manipulations this relation can be rewritten in the form:

(
(Dκ4 − µ − 1)κ tanh κ(h − d) − K

)
(K sinh κd − κ cosh κd) = 0 (22)

For d = 0 the dispersion relation for the zero-draft platform is recovered. It should be noticed that relation
(22) is not exactly the same as the zero-draft relation with h replaced by h − d. Hence, we ignore the zeros
of the second part, that occur for values of K sufficiently large only.

3.1 Semi-infinite platform

Let us first consider the half-plane problem. We introduce some slight physical damping to get rid of the
contributions of the upper bound in the last integral in (21) and the second part of the first integral. The
terms we obtain after closure of the contour in the last integral of (21) contain the exponential functions
eiknx. We take the coefficients of each exponential equal to zero. This leads to a set of N algebraic equations
for the coefficients an and αn. For the the half-plane problem, we obtain for i = 0, . . . , N − 1:

N−1∑
n=0

αn

cosh knh
Ki,n −

N+1∑
n=0

an

κn − ki

(
(Dκ4

n − µ + 1) sinh ki(h − d) − K
ki

cosh ki(h − d)

)

= δ0
i

hk2
0 − hK2 + K

(k2
0 − K2) cosh k0h)

− Ki,0

cosh k0h
, (23)

where the coefficients Ki,n are defined as

2Ki,n = 1
ki + kn

[
sinh(ki + kn)h − sinh(ki + kn)(h − d))]

+ 1
ki − kn

[
sinh(ki − kn)h − sinh(ki − kn)(h − d)

]
. (24)

This is a set of N equations for 2N + 2 unknown coefficients. We have two conditions at the edge of the
plate, so we must still obtain N equations. At the vertical frontend of the platform Eq. 17 gives the relation:

2πφ(0, z) = 2πφinc + lim
x→0

∫ 0

−d
φ(0, ζ )

∂G(x, z; 0, ζ )

∂ξ
dζ

−iω
∫ ∞

0

(
1
K

(
D ∂4

∂ξ4 − µ + 1
)

w(ξ)
∂G(0, z; ξ , −d)

∂ζ
− w(ξ)G(0, z; ξ , −d)

)
dξ . (25)
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We insert the series expansions (18) and (19) in this equation and compare the coefficients of cosh ki(z+h).
For the Green function we use expression (15) in both integrals.

We obtain for i = 0, . . . , N − 1:

hk2
i − hK2 + K

(k2
i − K2) cosh kih

αi −
N−1∑
n=0

αn

cosh knh
Ki,n

−
N+1∑
n=0

an

κn + ki

(
(Dκ4

n − µ + 1) sinh ki(h − d) − K
ki

cosh ki(h − d)

)
= 1

cosh k0h
Ki.0 (26)

We give some results for the absolute value of the amplitude of the deflection for a semi-infinite platform
with a draft of 2 m and a water depth of 10 m. In Fig. 1 results are shown for three values of the deep-water
wave lengths, λ = 2π/K = 150, 90, 30 m, respectively. As expected, the amplitude increases with increasing
values of the wave length. In Fig. 2 we show for λ = 90 m and a water depth of 10 m the absolute value
of the amplitude for several values of the draft, d = 0, 2, 4, 6 m. In Fig. 3 we show the influence of water
depth on de amplitude of deflection. We have chosen h = 100, 20, 10 m, d = 2 m and a fixed frequency with
λ = 90 m. The amplitude of the deflection increases for increasing water depth. To carry out computations
for the larger values of the water depth one must get rid of all hyperbolic sine and cosine functions in the
formulation. This can be done by using standard formulas for these functions and by using the dispersion
relation for the free-surface water waves. By doing so one obtains very accurate results. In Fig. 4 we show the
real part of the deflection for the same values of water depth, d = 5 m, and fixed values of the wavelength,
λ0 = 2π/k0 = 100 m. We have also computed the absolute value of the amplitude of the wave elevation in
front of the platform. The result is shown in Fig. 5. It is clearly shown that the elevation of the wave and
the platform are discontinuous at x = 0. The amplitude of the reflected wave α0 = 0.45657 − 0.43639i.

3.2 Strip of finite length

We follow the same procedure as for the semi-infinite case. The first step is to compare the coefficients of
the exponential functions e±iknx in (21). This leads to a set of 2N algebraic equations for the coefficients
an, bn, αn and βn:

Fig. 1 D = 107 m4, d = 2 m, h = 10 m and λ =
150, 90, 30 m (top-down)

Fig. 2 D = 107 m4, d = 0, 2, 4, 6 m (top-down), h = 10 m
and λ = 90 m
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Fig. 3 D = 107 m4, d = 2 m, h = 100, 20, 10 m (top-down)
and λ = 90 m

Fig. 4 Real part of the deflection for D = 107 m4, d = 5 m,
h = 100, 20, 10 m (top-down) and λ0 = 100 m

Fig. 5 Amplitude of
wave and deflection for
D = 107 m4, d = 2 m,
h = 10 m and λ = 90 m

N−1∑
n=0

αn

cosh knh
Ki,n −

N+1∑
n=0

an

κn − ki

(
(Dκ4

n − µ + 1) sinh ki(h − d) − K
ki

cosh ki(h − d)

)

+
N+1∑
n=0

bn

κn + ki

(
(Dκ4

n − µ + 1) sinh ki(h − d) − K
ki

cosh ki(h − d)

)
eiκnl

= δ0
i

hk2
0 − hK2 + K

(k2
0 − K2) cosh k0h)

− Ki,0

cosh k0h
(27)

and
N−1∑
n=0

βn

cosh knh
Ki,n +

N+1∑
n=0

an

κn + ki

(
(Dκ4

n − µ + 1) sinh ki(h − d) − K
ki

cosh ki(h − d)

)
eiκnl

−
N+1∑
n=0

bn

κn + ki

(
(Dκ4

n − µ + 1) sinh ki(h − d) − K
ki

cosh ki(h − d)

)
= 0. (28)

This is a set of 2N equations for 4N + 4 unknown coefficients. Next we consider the equations at x = 0
and x = l, respectively. After integration with respect to the spatial variable one obtains a summation of
cosh ki(z + h) terms. By taking the coefficients of each cosh ki(z + h) function equal to zero we obtain the
following set of 2N equations for the unknown expansion coefficients.
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At x = 0 we get

hk2
i − hK2 + K

(k2
i − K2) cosh kih

αi −
N−1∑
n=0

αn − βneikil

cosh knh
Ki,n

−
N+1∑
n=0

an

κn + ki

(
(Dκ4

n − µ + 1) sinh ki(h − d) − K
ki

cosh ki(h − d)

) (
1 − ei(κn+ki)l

)

+
N+1∑
n=0

bn

κn − ki

(
(Dκ4

n − µ + 1) sinh ki(h − d) − K
ki

cosh ki(h − d)

) (
eiκnl − eikil

)

= 1
cosh k0h

Ki.0, (29)

and at x = l we get

hk2
i − hK2 + K

(k2
i − K2) cosh kih

βi +
N−1∑
n=0

αneikil − βn

cosh knh
Ki,n

+
N+1∑
n=0

an

κn − ki

(
(Dκ4

n − µ + 1) sinh ki(h − d) − K
ki

cosh ki(h − d)

) (
eiκnl − eikil

)

−
N+1∑
n=0

bn

κn + ki

(
(Dκ4

n − µ + 1) sinh ki(h − d) − K
ki

cosh ki(h − d)

) (
1 − ei(κn+ki)l

)

= hk2
0 − hK2 + K

(k2
0 − K2) cosh k0h

eik0l − 1
cosh k0h

Ki.0. (30)

Together with the four relations at the end of the strip we have 4N + 4 linear algebraic equations for the
4N + 4 unknown coefficients.

The set of equations as it is written here is not very suitable for direct numerical computations. Espe-
cially for large values of the water-depth, the arguments of the hyperbolic sine and cosine functions become
rather large. So one is subtracting very large values in the computation of the coefficients. To attain a high
numerical accuracy one must get rid of these functions. This can be done by using the dispersion relation
for the water region. In Appendix B a more suitable set of equations will be given.

We show some computational results for a two-dimensional platform of width 300 m. In all cases we
take fixed values for the flexural rigidity D = 107 m4, the width of the strip l = 300 m and the water depth
h = 10 m. In Figs. 6 and 7 we show for d = 0 and for d = 2 m the variation of the amplitude of deflection
with respect to the wave length.

In Figs. 8 and 9 the dependence on the draft for fixed values of the wave length is shown. The results
of the first case show an increase of the deflection for increasing values of the draft. It will be shown later
that this is due to a shift in the reflection curve. In Fig. 10 a result is shown for a larger value of the flexural
rigidity D = 1010 m4 and wave length λ/l = 0.5. This case is comparable with the interaction of free-surface
waves with a rigid body. One clearly observes that the motion of the dock consists of a heave and pitch
motion only.

In Figs. 11 and 12 we show, for two values of the wave length, the absolute value of the amplitude of the
water surface in front of and behind the strip, together with the amplitude of the plate deflection for the
zero-draft case. The second case is near the zero-reflection situation.

In the 4-m-draft case, see Figs. 13 and 14, we see that λ/l = 0.215, or in terms of the actual wave length
λ0/l = 0.178, is close to total reflection. This is in contrast with the zero-draft case in Fig. 12, due to the shift
in the transmission-reflection curves. For the same reason the absolute value of the deflection increases if
the draft increases in Fig. 8 in contrast with the result in Fig. 9.
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Fig. 6 D = 107 m4, l = 300 m, d = 0 m, h = 10 m and
λ/l = 0.5, . . . , 0.3, −− 0.1, −−

Fig. 7 D = 107 m4, l = 300 m, d = 2 m, h = 10 m and
λ/l = 0.5, 0.3, 0.1

Fig. 8 D = 107 m4, l = 300 m, d = 0, −−, 2, −−, 4, . . . m,
h = 10 m and λ/l = 0.3

Fig. 9 D = 107 m4, l = 300 m, d = 0, −−, 2, −−, 4, . . . m,
h = 10 m and λ/l = 0.5

Fig. 10 D = 1010 m4,
l = 300 m, d = 0, 2, 4 m,
h = 10 m and λ/l = 0.5
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Fig. 11 D = 107 m4, l = 300 m, d = 0 m, h = 10 m and
λ/l = 0.3

Fig. 12 D = 107 m4, l = 300 m, d = 0 m, h = 10 m and
λ/l = 0.215

Fig. 13 D = 107 m4, l = 300 m, d = 4 m, h = 10 m and
λ/l = 0.3

Fig. 14 D = 107 m4, l = 300 m, d = 4 m, h = 10 m and
λ/l = 0.215

The reflection and transmission coefficients for a strip of 300 m and depth 10 m are shown in Fig. 15, for
zero-draft and in Fig. 16 for a draft of two meters. If we define R = α0 and T = β0, notice no exponential
function, we find that in all cases the relations |T|2 + |R|2 = 1 and TR + TR = 0 see for instance [1] or
for a derivation [8], are fulfilled for at least 10 decimals. The coefficients are presented as a function of the
actual wave length, λ0/l = 2π/k0l. In the Figs. 17 and 18 these coefficients are given for a water depth of
100 m. In all cases the coefficient of flexural rigidity equals D = 107 m4. Figures 18, 19 and 20 show the
results for different sizes of the strip. In Figs. 21 and 22 the result is shown for a strip of width l = 100 m
and draft d = 8 m. It is clearly observed that, for the short waves, total reflection takes place.

Appendix A: The Green’s function

Here we derive the two-dimensional version of the function of Green G(x, z; ξ , ζ ) as used in this paper.
This ‘source’ function is a solution of

Gxx + Gzz = 2πδ(x − ξ , z − ζ ), (31)
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Fig. 15 −−− Reflection and −− transmission coefficients
for h = 10 m, d = 0 m and l = 300 m

Fig. 16 Reflection and transmission coefficients for h =
10 m, d = 4 m and l = 300 m

Fig. 17 Reflection and transmission coefficients for h =
100 m, d = 0 m and l = 300 m

Fig. 18 Reflection and transmission coefficients for h =
100 m, d = 2 m, and l = 300 m

Fig. 19 Reflection and transmission coefficients for h =
100 m, d = 2 m, and l = 650 m

Fig. 20 Reflection and transmission coefficients for h =
100 m, d = 2 m, and l = 1000 m
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Fig. 21 Reflection and transmission coefficients for h =
100 m, d = 8 m, and l = 1000 m

Fig. 22 Reflection and transmission coefficients for h =
500 m, d = 8 m and l = 1000 m

with boundary conditions:

KG − Gz = 0 at z = 0 (32)

Gz = 0 at z = −h. (33)

We introduce the Fourier transform of G:

G̃(z; ζ ) = 1
2π

∫ ∞

−∞
G(x, z; ξ , ζ )e−iγ x dx. (34)

This transformed Green’s function satisfies the conditions:
G̃zz − γ 2G̃ = 0 for z �= ζ

KG̃ − G̃ = 0 at z = 0
G̃z = 0 at z = −h

limε→0

(
G̃(ζ + ε; ζ ) − G̃(ζ − ε; ζ )

)
= 0

limε→0

(
G̃z(ζ + ε; ζ ) − G̃z(ζ − ε; ζ )

)
= e−iγ ξ .

(35)

The solution of this equations is

G̃(z; ζ ) = 1
γ

K sinh γ z + γ cosh γ z
K cosh γ h − γ sinh γ h

cosh γ (ζ + h)e−iγ ξ for z > ζ (36)

G̃(z; ζ ) = 1
γ

K sinh γ ζ + γ cosh γ ζ

K cosh γ h − γ sinh γ h
cosh γ (z + h)e−iγ ξ for z < ζ . (37)

Then we transform back to the x-variable. This results in (13) and (14). The contour of integration passes
above or underneath the singularities on the real axis. The choice of this contour is determined by the
radiation condition. For x > ξ the waves travel in the positive x-direction, while for x < ξ the waves travel
in the negative x-direction. Therefore the contour passes the negative real pole from above and the positive
real pole from below. Closure of the contour in the complex γ -plane leads to (15).

Appendix B: Simplification of the set of algebraic equations

To obtain accurate solutions of the set of Eqs. 26–28 one must remove the terms that lead to subtraction
of large numbers. To achieve this goal we use the dispersion relation (10), γ tanh(γ h) = K. Making use of
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the relation:

cosh(γ h)2 − sinh(γ h)2 = 1,

one obtains for the zeros γ = ki for i = 0, 1, · · · · · ·

cosh(kih) = (−1)iki√
k2

i − K2
and sinh(kih) = (−1)iK√

k2
i − K2

.

We also use

cosh γ (h − d) = cosh γ h cosh γ d − sinh γ h sinh γ d

sinh γ (h − d) = sinh γ h cosh γ d − cosh γ h sinh γ d.

One can see that for large values of the depth k0 is very close to K and the accuracy is improved if one
divides out the large term analytically. The results in Fig. 21 cannot be obtained without this simplification.
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